
Computer Science

r

The Occurrence of Continuation Parameters
in CPS Terms

Olivier Danvy Frank Pfenning

February 1995
CMU-CS-95-121

t;.- y-

I..

u

wu

t. ,.-.'
Vk.i-iT.TT'-i-

I
V; •«>:'

.^:'-^ w

Mellon
19950405 008

OTIC QUäLET H:S?SCTS-V

The Occurrence of Continuation Parameters
in CPS Terms

Olivier Danvy Frank Pfenning

February 1995

CMU-CS-95-121

School of Computer Science

Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

We prove an occurrence property about formal parameters of continuations in Continuation-Passing
Style (CPS) terms that have been automatically produced by CPS transformation of pure, call-by-
value A-terms. Essentially, parameters of continuations obey a stack-like discipline.
This property was introduced, but not formally proven, in an earlier work on the Direct-Style
transformation (the inverse of the CPS transformation). The proof has been implemented in Elf,
a constraint logic programming language based on the logical framework LF. In fact, it was the
implementation that inspired the proof. Thus this note also presents a case study of machine-
assisted proof discovery.
All the programs are available in

J ftp.daimi.aau.dk:pub/danvy/Programs/danvy-pfenning-Elf93.tar.gz
I ftp.es.emu.edu:user/fp/papers/cpsocc95.tar.gz

Most of the research reported here was carried out while the first author visited Carnegie Mellon University in the
Spring of 1993. Current address: Olivier Danvy, Ny Munkegade, Computer Science Department, Aarhus University,
DK-8000 Aarhus C, Denmark; danvy@daimi.aau.dk

This work was supported by NSF Grant CCR-93-03383 and by the DART project (Design, Analysis and Reasoning
about Tools) of the Danish Research Councils.

Aocossion J?or

HTIS GRAM
P^IG MB
Unannounced
justlfioatior

Byaj

3-ail aiad/«
Spsaial

Keywords: Lambda-Calculus, Continuation-Passing Style, Logical Frameworks

Contents

1 Introduction 2

2 The CPS Transformation 3

3 CPS Terms 5

3.1 BNF of CPS terms 5

3.2 Occurrences of continuation parameters 5

3.3 Occurrences of formal parameters of continuations 5

4 The Proof 7

5 Implementation in Elf 9

5.1 Direct-style terms 10

5.2 CPS terms 10

5.3 The CPS transformation 11

5.4 Ordering over parameters of continuations 12

5.5 The proof 12

5.6 An example 14

6 The Direct-Style Transformation 16

7 Related Work 18

8 Conclusion and Issues 18

A Occurrences of Continuations Parameters 18

List of Figures

1 The left-to-right, call-by-value CPS transformation formulated as a function 4

2 The left-to-right, call-by-value CPS transformation formulated as a judgment 4

3 Occurrences of continuation parameters in a CPS term 6

4 Ordering over formal parameters of continuations in a CPS term 6

5 The call-by-value DS transformation formulated as a function and using substitutions 16

6 The call-by-value DS transformation formulated as a function and using a stack ... 17

7 The call-by-value DS transformation formulated as a judgment and using a stack . . 17

1 Introduction

Continuation-Passing Style (CPS) A-terms encode both evaluation order and sequencing order [13].

For example, consider the Direct Style (DS) A-term

Xx.fx(gx).

Evaluating it from left to right under call-by-value (CBV) amounts

1. to evaluate f x — call the result Ui,

2. to evaluate gx — call the result V2, and

3. to apply vi to v^ — call the result v%.

CBV, left-to-right CPS transformation of this term yields

Xk.k (Xx.Xk.f x Xvi.g x \v2-vi vi Xv3.kv3).

On the other hand, evaluating the DS A-term above from right to left under CBV amounts

1. to evaluate gx — call the result V2,

2. to evaluate f x — call the result v\, and

3. to apply vi to V2 — call the result 173.

CBV, right-to-left CPS transformation of this A term yields

Xk.k (Xx.Xk.gx Xv2-f x Xvi.vi V2 Xv3.kv3).

In earlier work, the first author developed a textual inverse of the CPS transformation, i.e.,

a "direct-style transformation" [2]. To this end, it was necessary to characterize CPS terms that

correspond to the output of Plotkin's CPS transformation, after administrative reductions [3, 16].

However this characterization was not formally proven. The goal of this note is to prove it.

The proof has been implemented in Elf [10], a constraint logic programming language based

on the logical framework LF [5]. In fact, it was the implementation that inspired the proof.

LF turned out to be particularly suited for this problem, since two-level A-terms and the CPS

transformation can be encoded very naturally by using meta-level abstraction and application to

model administrative reductions. This note thus also presents an excellent, albeit small, case study

of machine-assisted proof discovery.
The rest of this note is organized as follows. Section 2 presents our starting point: the left-to-

right CBV CPS transformation. We formulate it both as a function and as a judgment. Section

3 describes properties of CPS terms as produced by this CPS transformation: their BNF and the

ordering of formal parameters of continuations. In Section 4, we prove that the output of the CPS

transformation satisfies the ordering. Section 5 describes the implementation of the proof in Elf.

Following a comparison with related work in Section 7, Section 8 concludes.

2 The CPS Transformation

The BNF of the pure A-calculus reads as follows. We refer to this A-calculus as direct style (DS) to

distinguish it from the continuation-passing style (CPS) calculus introduced later.

r G DRoot — DS terms r ::= e

e € DExp — DS expressions e ::= e0ei \ t

t € DTriv — DS trivial expressions t ::= x \ Xx.r

x e Ide — identifiers

Figure 1 displays a one-pass CPS transformer for the pure call-by-value A-calculus. This transformer

is an optimized version of Plotkin's CPS transformer [13], derived in an earlier work [3]; it is slightly

rephrased to match the syntactic domains.
These equations can be read as a two-level specification ä la Nielson and Nielson [8]. Opera-

tionally,

• for any variable x and any expressions e, e0, and eu [x]e and e0(ci) respectively correspond to

functional abstractions and applications in the translation program (and define the so-called

"administrative reductions"), and

• for any variable x and any expressions e, e0, and eu Xx.e and e0ei respectively represent

abstract-syntax constructors (to build the residual program).

Note that the types of the translations and continuations are meta-level types: The object calculus

is untyped. We revisit these types in Section 5.2.
The CPS transformation can be reformulated with three judgments. A DS term r is transformed

into a CPS term r' whenever the judgment

, DRoot / [_ r y r

is satisfied. Given a continuation K, a DS expression e is transformed into a CPS expression e'

whenever the judgment
DExp ,

r e ; n —> e

is satisfied. Finally, a DS trivial expression t is transformed into a CPS trivial expression *' whenever

the judgment
h t D-Hv t'

is satisfied. The overall transformation is displayed in Figure 2.
NB: In the inference rule for applications, *0 is "new", i.e., the deduction of the left premise

is parametric in t0. This means that we can substitute an arbitrary trivial term t for tQ in this

derivation and obtain a derivation of h ex ; [h]th XV.K(V) °A
P
 e'^t). This property is exploited

crucially in the proof of Section 4.

cDRoot . DRoot ^ CRoot

cDRoot|ej = xk.CDExp[e]([t]kt)

QDExp

CDExp[eoei]K

CDExp[i] K

DExp -»■ [CTriv -> CExp] -> CExp

CDExp[e0] ([io]CDExp[ei] ([«i]toti AU.K(ü)))

K(cDTrivM)

cDTriv . DTriv ^ CTriv

CDTriv[z] = x

CDTriv[Az.r] = Ax.CDRoot[r]

where k and the u's are fresh variables.

Figure 1: The left-to-right, call-by-value CPS transformation formulated as a function

F-e;[t]fctD-g3V
h c

D«£?* A/t.e'

DExp ,
h ei ; [ti]t0*i AU.K(U) —► e'^p) h e0 ; fole'^p)

DExp ,

DExp ,
r ep ej ; /e —>• e'

, DTriv
r x —»• a;

. DRoot » |_ r ^ r'

I- Xx.r —H>v Xx.r'

h t D-^iv f'

Figure 2: The left-to-right, call-by-value CPS transformation formulated as a judgment

3 CPS Terms

We first specify the BNF of CPS terms as produced by the CPS transformation of Figures 1 and 2,

and then we specify the occurrence conditions over the continuations and their formal parameters.

Both specifications come from the earlier work on the DS transformation [2].

3.1 BNF of CPS terms

The BNF of CPS terms reads as follows. (NB: We distinguish between the original identifiers x

coming from the DS term, and the fresh identifiers v and A; introduced by C.)

r G CRoot — CPS terms r ::= Xk.e

e G CExp — CPS (serious) expressions e ::= Mi Xv.e | kt

t G CTriv — CPS trivial expressions t ::= x \ Xx.r \ v

x G Ide — source identifiers

v G Var — fresh parameters of continuations

k G Cont — fresh variables denoting continuations

3.2 Occurrences of continuation parameters

The occurrence conditions over continuation parameters is simple: there is only one continuation

at any point of a CPS term. This is captured in Figure 3 and proven in Appendix A.

CPS terms that do not satisfy the occurrence conditions over continuation parameters corre-

spond to DS terms that use a control operator such as call/cc. This point is investigated elsewhere

[4, 6].

3.3 Occurrences of formal parameters of continuations

The occurrence conditions over the formal parameters of continuations are reproduced in Figure 4.

This figure should be read as follows. Given a CPS expression e occurring in the scope of formal

parameters of continuations listed in the order of their declaration in a list £, the judgment

S rVar e

is satisfied whenever the variables listed in £ and all the other formal parameters of continuations

declared in e occur in a left-to-right fashion in e. (NB: • denotes the empty list.)
Similarly, given a trivial term t occurring in the scope of formal parameters of continuations

listed in the order of declaration in £, the judgment

e iCTriv t . d

is satisfied whenever £' is a prefix of £ and the remaining variables off occur in t in a left-to-right

fashion.
Our goal here is to prove that transforming a DS term r with C (in Figures 1 and 2) yields a

CPS term that satisfies the judgment
h$*°ot C[r].

hg*-' Xk.e

i_CTriv 4.
hCont *1

i_CTriv J.
^Cont Z0 k\- CExp

Cont

k^tohXv.e
K CTriv

Cont

£• I-' A. r,
CExp
Cont kt

L_CTriv
'Cont

i_CRoot „
rCont r

•"SS* A*.r |_CTi
Cont

Figure 3: Occurrences of continuation parameters in a CPS term

• hCExp e * rVar e

!-v£°ot xk-e

g ^aT *1 i ft ft ^aT *0 ? 6> 6), * ^aT e

i_CRoot „
^Var r

f ^iv*; €
£HCTrivAa..r.£ ft W hCJ»v „ ; £

Figure 4: Ordering over formal parameters of continuations in a CPS term

NB: There is nothing wrong with CPS terms that do not satisfy the judgments of Figure 4.

Simply, they specify another evaluation order or another sequencing order than the one captured

in the CPS transformation of Figures 1 and 2. Therefore, they cannot be mapped back to direct

style naively [2, 7].

4 The Proof

Globally, we are interested in proving that if h r D-^ot r' then h^ot r'. Clearly, we cannot

prove this inductively by itself since properties at the root of a term are defined in terms of the

expressions it contains. The critical issue is the property of continuations we must prove (in the

inductive conclusion) and require (in the inductive hypothesis) for the translation of expressions

under a continuation. A continuation is a (meta-level) function from trivial terms to expressions,

which suggests the method of logical relations [17]. The idea behind binary logical relations is to

consider two functions related if they map related arguments to related results. In unary form: A

function is valid if it maps valid arguments to valid results. This kind of definition is pervasive

in the application of logical frameworks to meta-theoretic reasoning (e.g., [9]). It works smoothly

here.
Four notions of validity arise: for root terms, for trivial expressions, for serious expressions, and

for continuations. In their definitions, we must account for the context £ in which an expression

might occur. For root terms, serious expressions, and trivial expressions, the notion of validity

is derived directly from the property we are trying to prove; for continuations it arises from the

considerations of logical relations as motivated above. We also streamline the definitions by con-

sidering separately the case of a trivial variable v, since such a variable is never the result of the

translation of a trivial DS term (see Theorem 1 (3)).

Definition 1

(1) r' is valid if\-^otr'.

(2) c'we-vaiid if£^Pe>.

(3) f is valid if£ r-$™v t' ; <£ for every f.

(4) K is £-valid if

(a) £, v K£xp K(V), and

(b) £ h$fr
xp «(*'), for anV valid f.

This definition is more complex than it may appear at first, since it involves meta-level appli-

cations K(V) and «(*') and therefore, implicitly, substitution.

Theorem 1

(1) Ifhr D-^f r' then r' is valid.

(2) If K is £-valid and h e ; K —*£ e' then e' is £-valid.

(3) Ifh t ^T t' then t' is valid.

Proof: By mutual induction on the derivations TZ, £, and T of I- r —^ r', h e ; K —> e', and

h t —™ t', respectively.

Case n - ^;WtD-^e>

Then « = [t] kt is «-valid:

(a) *' V h^r'V v ' * holds, and

|_CTriv fi .

(b) 3W J^ for any valid l'-
Hence, by induction hypothesis (2) on £, • h^*p e', and thus h$*oot Xk.e'.

£i {to) £o
h ei ; fal tpt! A».*(t;) °-^P e', fa) h e0 ; ftp] e', fa) °-^P e'

t^ase c DExp ,
I- eo ei ; K —> e

Assume K is £-valid. We need to show that K0 = [t0] eifa) is £-valid, since then £ l-Var
XP e' bv

induction hypothesis (2) on £0. Thus we need to show properties (a) and (b) for K0.

£I(UO)

(a) We need £, u0 l~VarXP Ko(uo)- Consider I- e2 ; [*i] u0ti AU.K(U)
I
^HP ei(üo). We would like

to show that

«l = [*i] voty XV.K(V)

is f, uo-valid, since then e'^Uo) = «o(uo) is £, Uo-valid by induction hypothesis (2) on

£i(v0). Therefore we need to consider the two cases of Definition 1(4).

(a) £, v0, vi l~varXP «i(ui)- We derive this as follows:

since K is £-valid
 t- iCExp i \

S,vo,vi^rvi;TVo U^^;€ ^ Var KW

£, «o, «i ^varXPuoUiAu.«;(u)

(b) £, u0 ^vl^ K(fi)' wnere *i is valid. This is established by the derivation

since t[is valid since K is £-valid
f, «o h^iv , . ^ Uo CTriv . £, t, H^ *(«)

$,V0,V1rf%PV0t1\v.K(V)

Thus Ki is £, t»o-valid. Therefore, by induction hypothesis on £i(uo),

e,W0^VaXP«0K).

(b) We need £ h^r
xp K0{t'0) for any valid t'0. Consider

Wo) DE

We would like to show that

«l = [ti]t'0ti XV.K(V)

is £-valid, so we can apply the induction hypothesis to £x (t'0). Again, we need to consider

the two clauses of Definition 1(4).

(a) £, ui h$Jxp /ci(ui). We derive this as follows:

since t'0 is valid since K is £-valid

£, ü! r-$™v t>i ; £

e,«1^v«P*o"i^./e(t;)

(b) £ !~VarXP Kl(*l) for aRy Valid *1- We COnstrUct:

since i'x is valid since t'0 is valid since K is £-valid

g l-SE* f, ; g e H^"v ft ; £ 6 i> HS? «(t>)
^VarXP^0*iA^W

Hence «i is £-valid and thus £ h^xp e'^Q by induction hypothesis (2) on £i{t'0).

= «o(*o)

Thus K0 is £-valid. Hence e' is valid by induction hypothesis (2) on £0-

T
, DTriv ,

Case £ = ht ^ *
ht;/AP

K(f')
By induction hypothesis (3) on T, £' is valid. Since we assume that K is £-valid, K(?) is also

£-valid by clause (b) in Definition 1.

Case T = nqv.„ • Then , Chiv _ m c is an axiom for any f. DTriv " <r i_0 Inv . <r
|- x "lily x ? r-Var X ' S

jl by i.h. (1) on TZ
DRoot ,

h Ax.r —> Xx.r

, DRoot , |_CRoot ri

Case T = , .oil!' r Then we construct ^cfJXxy.^
\- A-r r ^ A.T.r s Var ' "»

D

5 Implementation in Elf

In this section we show the implementations of the DS and CPS terms, CPS transformation,

ordering, and the proof that the results of the CPS transformation are valid. Familiarity with the

LF logical framework [5], its methodology, and it implementation in Elf [10] is assumed. Some

implementation-specific details will be mentioned in the commentary.

5.1 Direct-style terms

Recall the information definition of direct-style (DS) terms in BNF form.

DS (Root) Terms r
DS (Serious) Expressions e

DS Trivial Expressions t

= e
= e0ei | t
= x I Xx.r

We only remark that the representation uses higher-order abstract syntax [11] to represent object-

level abstractions, and that the natural inclusions (e.g., every trivial expression is an expression)

are modeled by explicit coercions (e.g., dtriv_dexp).

droot : type, '/.name droot R
dexp : type, '/.name dexp E
dtriv : type, '/.name dtriv T

dexp_droot
dapp
dtriv_dexp
dlam

dexp -> droot.
dexp -> dexp -> dexp.
dtriv -> dexp.
(dtriv -> droot) -> dtriv.

Note that dlam abstracts over an argument of type dtriv, thus encoding the fact that variables

x are trivial expressions. The '/.name declarations indicate preferred variable names for syntactic

classes, in case the Elf interpreter has to synthesize names (which is a frequent occurrence in during

type reconstruction).

5.2 CPS terms

Recall the definition of continuation-passing style (CPS) terms in BNF form.

CPS (Root) Terms r
CPS (Serious) Expressions e

CPS Trivial Expressions t

CPS terms are modelled using the same principles as DS terms, but they introduce a new con-

sideration. The two-level CPS transformation from Section 2 shows that a continuation is best

considered as a meta-level function which, when applied to a trival term, yields an expression. It

therefore has type ctriv -> cexp. An abstraction over a continuation (as is necessary for a root

term Xk.e) thus is a third-order construct! This is rare and indicates that we are exploiting the

expressive power of the meta-language to a great extent.

croot : type, '/.name croot R
cexp : type, '/.name cexp E
ctriv : type, '/name ctriv T
'/. ccont : type = ctriv -> cexp. y.name ccont K

= Xk.e
= eo e\ Xv.e | kt
= x I Xx.r I v

rlam
capp
clam

((ctriv -> cexp) -> cexp) -> croot.
ctriv -> ctriv -> (ctriv -> cexp) -> cexp.
(ctriv -> croot) -> ctriv.

Note that Elf currently does not support definitions, so we must write the expanded version of

the continuation type ccont by hand. It is inserted in the source only as a comment.

10

5.3 The CPS transformation

The judgments in Figure 2 can be easily transcribed into Elf. Just like the inference rules them-

selves, the corresponding declarations below should be understood schematically—the free variables

are implicitly quantified. Elf's type reconstruction determines the most general type for the free

variables in each declaration.
Instead of d : A -> (B -> C) we often use the form d : C <- B <- A to emphasize the op-

erational interpretation of the declarations as a logic program (to solve C first solve B then A). In

this case, the logic program transforms DS terms to CPS terms. The '/.mode pragmas establish

the role of input (+) and output (-) arguments to a predicate. They are checked for consistency,

thus providing operational correctness guarantees beyond type correctness. The '/.lex annotation

postulates a termination ordering on the given arguments and modes which is checked by Elf. In

this case we simply use the subterm ordering on the first argument of the three mutually recursive

judgments.

cst_r : droot -> croot -> type. '/.name cst_r CR

cst_e : dexp -> (ctriv -> cexp) -> cexp -> type. '/.name cst_e CE

cst_t : dtriv -> ctriv -> type. '/.name cst_t CT

'/jnode -cst_r +R -R'
'/.mode -cst_e +E +K -E'

'/.mode -cst_t +T -T'

'/.lex {R E T}

cst_r_dexp : cst_r (dexp_droot E) (rlam E')
<- (-Ck: ctriv -> cexp} cst_e E k (E' k)).

cst_e_dapp :
cst_e (dapp EO El) K E'

<- ({tO:ctriv} cst_e El ([tl:ctriv] capp tO tl K) (El' tO))
<- cst_e EO ([tO:ctriv] El' tO) E'.

cst_e_dtriv : cst_e (dtriv_dexp T) K (K T')
<- cst_t II1.

cst_t_dlam : cst_t (dlam R) (clam R')
<- ({x:dtriv} -Cx':ctriv} cst_t x x' -> cst_r (R x) (R' x')).

The left premise of the rule for applications e0e'i is required to be parametric in t0. This is

represented by a dependently typed function from t0 to a derivation of

h ei ; [*i]*o*i AU.K(U) -4
P
 ei(i0)-

In Elf's concrete syntax this type is written as

{tO:ctriv} cst_e El ([tl:ctriv] capp tO tl K) (El' tO)

Note that we have silently ^-reduced XV.K(V) and simply written K. This is a matter of style and

efficiency, but not essential, since the definitional equality of the Elf meta-language is /^-conversion.

11

5.4 Ordering over parameters of continuations

In order to describe the ordering over parameters of continuations, we require a notion of stack

which is easily defined. The '/infix declaration makes ',' a left-associative infix operator with an

(arbitrary) binding strength of 10.

stack : type, y.name stack Xi
dot : stack.
, : stack -> ctriv -> stack, '/.infix left 10 ,

The three mutually recursive judgments regarding variable ordering are easily translated into

Elf. Note that the cases concerning variables x, v and k must be given wherever such variables

are introduced, rather than globally. This is a consequence of the representation technique of

higher-order abstract syntax.

ord_r croot -> type. y.name ord_r OR

ord_e stack -> cexp -> type. '/.name ord_e OE

ord_t stack -> ctriv -> stack -> type. '/.name ord_t OT

'/.mode -ord_r +R
'/.mode -ord_e +Xi +E
'/.mode -ord_t +Xi' +T -Xi"
'/.lex -CR E T}

ord_r_rlam : ord_r (rlam E)
<- ({k:ctriv -> cexp}

({Xi:stack} {T:ctriv}
ord_e Xi (k T) <- ord_t Xi T dot)

-> ord_e dot (E k)).

ord_e_capp : ord_e Xi (capp TO Ti E)
<- ord_t Xi Tl Xil
<- ord_t Xil TO XiO
<- ({v:ctriv}

({Xi':stack} ord_t (Xi' , v) v Xi')
-> ord_e (XiO , v) (E v)).

ord_t_clam : ({Xi:stack} ord_t Xi (clam R) Xi)
<- ({x:ctriv}

({Xi':stack} ord_t Xi' x Xi')
-> ord_r (R x)).

5.5 The proof

The informal proof in Section 4 that continuation parameters obey a stack-like discipline can be

translated into Elf using the technique of higher-level judgments (see, for example, [12]). Our

(constructive) proof may be seen as containing an algorithm for computing a derivation 71' of

h^°ot r' from a derivation 71 of h r D-^»t r'. In Elf, this algorithm is implemented as a logic

program for transforming 71 into 71'; declaratively it is a higher-level judgment relating derivations

71 and TV. Properties of these higher-level judgments such as termination can then be established

automatically.

12

In order to match the definition of the CPS transformation closely, our formalization does not

use explicit definitions of validity except for continuations K, which would otherwise be unwieldy.

valid.k : stack -> (ctriv -> cexp) -> type.

'/.mode -valid_k +Xi +K
'/.lex K

vld_k : valid_k Xi K
<- ({v:ctriv}

({Xi':stack} ord_t (Xi' , v) v Xi')
-> ord_e (Xi , v) (K v))

<- ({f : ctriv}
({Xi:stack} ord_t Xi t' Xi)
-> ord_e Xi (K t')).

The proof is implemented by three mutually recursive higher-level judgments for root terms,

expressions, and trivial expressions. Each clause corresponds to one case of the informal proof.

Each appeal to an induction hypothesis appears as a recursive call.

proof_r : cst_r RE' -> ord_r R' -> type.
proof_e : cst_e EKE' -> valid.k Xi K -> ord_e Xi E' -> type.
proof_t : cst_t IT'-> ({Xi:stack} ord_t Xi T' Xi) -> type.

'/.mode -proof _r +CR -OR
'/.mode -proof _e +CE +VK -0E
•/.mode -proof _t +CT -0T
'/.lex {CR CE CT}

pf_r : proof.r (cst_r_dexp CE) (ord_r_rlam OE)
<- ({k:ctriv -> cexp}

{ok : {Xi:stack} {T:ctriv} ord_e Xi (k T) <- ord_t Xi T dot}
proof_e (CE k)
(vld_k

([f: ctriv] [CT:{Xi: stack} ord_t Xi t' Xi]
ok dot t' (CT dot))

(Cv:ctriv] [CT:{Xi':stack} ord_t (Xi' , v) v Xi']
ok (dot , v) v (CT dot)))

(OE k ok)).

pf e_dapp : proof_e (cst_e_dapp CEO CE1) (vld_k _ OE) OE'
<- ({vO : ctriv} {0T0 : {Xi':stack} ord_t (Xi' , vO) vO Xi'}

proof_e (CE1 vO)
(vld_k

([tl:ctriv] [0Ti:{Xi':stack} ord_t Xi' tl Xi']
ord_e_capp OE (0T0 Xi) (0T1 (Xi , vO)))

([vi:ctriv] [0Tl:{Xi':stack} ord_t (Xi' , vl) vl Xi']
ord_e_capp OE (0T0 Xi) (0T1 (Xi , vO))))

(VEl'V vO 0T0))
<- ({tO : ctriv} {0T0 : {Xi':stack} ord_t Xi' tO Xi'}

proof_e (CE1 tO)
(vld_k

([tl:ctriv] [0Tl:{Xi':stack} ord_t Xi' tl Xi']

13

ord_e_capp OE (OTO Xi) (OTi Xi))
([vl:ctriv] [OTI:{Xi':stack} ord_t (Xi' , vl) vl Xi']

ord_e_capp OE (OTO Xi) (OTi Xi)))
(VEl'T tO OTO))

<- proof_e CEO (vld_k VEl'T VEl'V) OE'.

pf_e_dtriv : proof_e (cst_e_dtriv CT) (vld_k OE _) (OE T' OT)
<- proof_t CT OT.

pf_t_dlam : proof_t (cst_t_dlam CR) (ord_t_clam OR)
<- ({x:dtriv} {x':ctriv}

{CT: cst_t x x'>
{0T:{Xi':stack} ord_t Xi' x' Xi'}
proof.t CT OT
-> proof_r (CR x x' CT) (OR x' OT)).

From the implementation above it is actually quite easy (with a little experience) to reconstruct

the informal proof.
The proof of the property of occurrences of continuations k themselves (see Figure 3) can also

easily be represented in the same style. It can be found in Appendix A.

5.6 An example

We now reconsider the direct-style term from Section 1.

Xx.fx(gx)

Under appropriate declarations for / and g as variables, this term is represented in Elf by

(dexp_droot

(dtriv_dexp
(dlam [x:dtriv]

dexp_droot (dapp (dapp (dtriv_dexp f) (dtriv_dexp x))
(dapp (dtriv_dexp g) (dtriv_dexp x))))))

: droot.

It is rather lengthy due to the coercions, but we could easily write a judgment to insert appropriate

coercions into pure A-term. In order to translate this we may pose the following query.

CR:
cst_r (dexp_droot

(dtriv_dexp
(dlam [x:dtriv]

dexp.droot (dapp (dapp (dtriv.dexp f) (dtriv_dexp x))
(dapp (dtriv_dexp g) (dtriv_dexp x))))))

R.

which yields the CPS term R (eliding the derivation CR)

R =
rlam [k:ctriv -> cexp]

k (clam [x':ctriv] rlam [kl:ctriv -> cexp]
capp f x' ([t01:ctriv] capp g' x' ([ti:ctriv] capp tOi tl kl))),

CR = ...

14

Modulo variable names, this corresponds to

Xk.k (Xx.Xk.fx Xvi.gx Xv2.v\ v2 Xv3.k v3).

The omitted term CR represents the derivation of the judgment

\- Xx.fx{gx) D^ Xk.k (Xx.Xk.f x Xvi.gx Xv2.v1v2 Xv3.k v3)

which was constructed by the Elf interpreter in answer to the first query. We can apply the

implementation of the meta-theory to translate CR into a derivation showing that the conditions on

occurrences of continuation parameters are satisfied in this example, that is, into a derivation of

hvS°ot Xk.k (Xx.Xk.fx Xvi.g x Au2.ui v2 Xv3.kv3).

The query is the following. The first argument to proof _r is the derivation CR elided above.

proof_r
(cst_r_dexp [k:ctriv -> cexp]

cst_e_dtriv
(cst_t_dlam [x:dtriv] [x'l:ctriv] [CT:cst_t x x'l]

cst_r_dexp [kl:ctriv -> cexp]
cst_e_dapp

(cst_e_dapp (cst_e_dtriv cst_f) ([tO:ctriv] cst_e_dtriv CT))
([tO:ctriv]

cst_e_dapp (cst_e_dtriv cst_g) ([t01:ctriv] cst_e_dtriv CT))))

OR.

We know that a query of this form will always succeed. In this case it produces the substitution

OR =
ord_r_rlam [k:ctriv -> cexp]

[ok:{Xi:stack} {T:ctriv} ord_t Xi T dot -> ord_e Xi (k T)]
ok dot

(clam [x':ctriv] rlam [kl:ctriv -> cexp]
capp f x' ([tO:ctriv] capp g' x' ([tl:ctriv] capp to ti kl)))

(ord_t_clam
([x'l:ctriv] [0T:{Xi>:stack} ord_t Xi' x'l Xi']

ord_r_rlam [kl:ctriv -> cexp]
[okl:{Xi:stack} {T:ctriv} ord_t Xi T dot -> ord_e Xi (kl T)]
ord_e_capp

(CvO:ctriv] [0T01:{Xi':stack} ord_t (Xi' , vO) vO Xi']
ord_e_capp

([vl:ctriv] [0T1:{Xi':stack} ord_t (Xi* , vl) vl Xi']
ord_e_capp

([v:ctriv]
[CT:{Xi>:stack} ord_t (Xi' , v) v Xi']
okl (dot , v) v (CT dot))

(0T01 dot) (0T1 (dot , vO)))
(ord_t_g (dot , vO)) (OT (dot , vO)))

(ord_t_f dot) (OT dot))
dot).

which shows that the CPS term above satisfies the ordering criterion.

15

-T^CRoot CRoot -► DRoot

£>CRoot[Afc.e] = PCExp[e]

-rjCExp CExp -> DExp

V^ltohXv.ej = £>CExp[e] [v := PCTriv[i0] £>CTrivM]

VCExplktj =
pCTriv^j

-TjCTriv CTriv -» DExp

Vcr"v[xJ = X

X>CTriv[Az.r] = Xx.VCRootlrJ

VCTTiv{vJ = V

Figure 5: The call-by-value DS transformation formulated as a function and using substitutions

6 The Direct-Style Transformation

Having formalized and proven the occurrences of continuation parameters in CPS terms, we can

now show the transformation from a CPS term back to direct style. Note that this transformation

only applies to terms satisfying occurrence and ordering conditions.

The following implementation uses substitution (see Figure 5). An implementation that uses a

stack £ without explicitly relying on substitution is also possible (see Figures 6 and 7).

dst_r : croot -> droot -> type.
dst_e : cexp -> dexp -> type.
dst_t : ctriv -> dexp -> type.

'/.mode -dst_r +R -R'
'/.mode -dst_e +E -E'
'/.mode -dst_t +T -T'
'/.lex {R E T}

dst_r_rlam : dst_r (rlam E) (dexp_droot E')
<- ({k:ctriv -> cexp}

({T:ctriv} {E:dexp} dst_e (k T) E <- dst_t T E)
-> dst_e (E k) E').

dst_e_capp : dst_e (capp TO Tl ([v:ctriv] E v)) E'
<- dst_t TO EO
<- dst_t Tl El
<- ({v:ctriv} dst_t v (dapp EO El) -> dst_e (E v) E').

dst_t_clam : dst_t (clam R) (dtriv_dexp (dlam R'))
<- (-[x:ctriv} -Cx':dtriv}

dst_t x (dtriv_dexp x')
-> dst_r (R x) (R> x')).

16

pCRoot . CRoot _> DRoot

X>CRoot[Afc.e] = DCExp[e].

pCBxp . CExp _> List(DExp) -»• DExp

VCEntotiXv.e}^ = let(e'i;ei) = ^CTrivPiK
inlet^;^0) = ^CTriv[ioKi

in 2>CEx<>M (&, e'oe'J

PCExp[Ä*K = let (e'; .} = PCTriv[iK
in e'

pCTriv . CTriv _^ List (DExp) -> (DExp x List (DExp))

X>CTrivM£ <*;0
I?CTriv[Ax.rK = (Xx.VCRootlrlO

PCTriv[t,]<fte'> = (e';0

where "let x = e in 6" abbreviates u([x]b)(e)n and thus denotes an administrative reduction.

Figure 6: The call-by-value PS transformation formulated as a function and using a stack

CExp ,
• he --f e

, , , CRoot ,

CTriv / CExp
^ h ti ^V e',; ft ft H *o -^ e0; & go. eo ei h e ~» e

CExp .
^hi0*iAu.e —fe'

, CRoot ,

- , CTriv t £ h Az.r —^v Az.r'; £
. . , CTriv , c ft e h u —>■ e ; c;

Figure 7: The call-by-value DS transformation formulated as a judgment and using a stack

17

7 Related Work

The structure of CPS terms has been little investigated. Most authors (e.g., Wand and Oliva [18])

implicitly rely on conformant CPS terms to run them on a stack machine.

In their work on reasoning about CPS programs, Sabry and Felleisen also rely on the unicity of

continuations parameters in the pure A-calculus [14, 15].

In their work on separating stages in the CPS transformation [7], Lawall and Danvy noticed that

the sequencing order encoded in CPS terms is accounted for by the occurrences of parameters of

continuations. In his work on the DS transformation [2], Danvy characterized the ordering of Figure

4, but did not prove it formally. During spring 1993, Danvy and Pfenning carried out the work

reported here. Later, in her PhD work on the inverseness of the CPS and the DS transformations,

Lawall independently proved by hand a similar ordering [6, Appendix A.1.1].

8 Conclusion and Issues

We have formalized and proven the occurrences of continuation parameters and of formal param-

eters of continuations in CPS terms. This new knowledge about continuations parameters in CPS

terms can enable their more efficient implementation. For example, the transformation of conform-

ing CPS terms back to direct style can be implemented using a stack to carry out substitutions

(see Figures 6 and 7). This new formulation also makes it simpler to prove that the CPS and the

DS transformations are inverses of each other [6] and to automate this proof.

The implementation in Elfis small but non-trivial. It captures the computational content of the

translations and the meta-theoretic reasoning in a declarative, yet executable way. The framework

is built around the notions of substitution and and meta-level function, which leads to a very elegant

and direct encoding. This representation is unusual in that it requires third-order constants (since it

abstracts over continuations), thus exemplifying a new technique for representing deductive systems

in LF interesting in its own right. Since the encoding suggested the proof technique, this paper

demonstrates, on a small scale, the value of a logical framework as a conceptual tool in the study

of the theory of programming languages.

A Occurrences of Continuations Parameters

Here we present the implementation of the occurrence condition on continuations parameters in CPS

terms resulting from a CPS transformation (see Figure 3). Again, we use a third-order judgment.

occ_r: croot -> type. %name occ_r KR
occ_e: ((ctriv -> cexp) -> cexp) -> type. '/.name occ_e KE
occ_t: ctriv -> type. '/.name occ_t KT

'/.mode -occ_r +R
'/.mode -occ_e +E
y,mode -occ_t +T
'/.lex {R E T>

18

occ_r_rlam: occ_r (rlam E)
<- occ_e E.

occ_e_capp: occ_e (Ck:ctriv -> cexp] capp TO Tl ([v:ctriv] (E k v)))

<- occ_t TO

<- occ_t Tl

<- ({v:ctriv}

occ_t v
-> occ_e ([k:ctriv -> cexp] (E k v))).

occ_e_cret: occ_e ([k:ctriv -> cexp] k T)

<- occ_t T.

occ_t_clam: occ_t (clam R)
<- ({x:ctriv}

occ_t x

-> occ_r (R x)).

'/.mode -occ_k +K

'/.lex K

occ_k: ((ctriv -> cexp) -> (ctriv -> cexp)) -> type, '/.name occ_k KK

occ_k_k : occ_k K
<- ({t:ctriv}

occ_t t
-> occ_e ([k:ctriv -> cexp] K k t)).

Next is the implementation of the proof that the CPS transformation of DS terms yields CPS

terms that satisfy the occurrence conditions of continuations parameters.

kproof.r : cst_r RE'-> occ_r R' -> type.
kproof_e : ({k:ctriv -> cexp} cst_e E (K k) (E' k))

-> occ_k K -> occ_e E' -> type,
kproof.t : cst_t I T' -> occ_t T' -> type.

'/.mode -kproof_r +CR -KR
•/.mode -kproof_e +CE +KK -KE
'/.mode -kproof_t +CT -KT
'/.lex -CCR CE CT}

kproof_r_dexp : kproof_r (cst_r_dexp CE) (occ_r_rlam KE)
<- kproof_e CE (occ_k_k [t:ctriv] [KT:occ_t t] occ_e_cret KT)

KE.

kproof_e_dapp : kproof.e (Ck:ctriv -> cexp] cst_e_dapp (CEO k) (CE1 k))

(occ_k_k KE') KE
<- (-CtO: ctriv} -CKT0:occ_t tO}

kproof_e (Ck] CEi k tO)
(occ_k_k [ti:ctriv] [KTl:occ_t tl]

occ_e_capp KE' KT1 KTO)

(KEi tO KTO))
<- kproof_e CEO (occ_k_k KEI) KE.

19

kproof_e_dtriv : kproof_e ([k:ctriv -> cexp] cst_e_dtriv CT) (occ_k_k KE')
(KE' T' KT)
<- kproof.t CT KT.

kproof_t_dlam : kproof_t (cst_t_dlam CR) (occ_t_clam KR)
<- ({x:dtriv> {x':ctriv}

{Cx: cst_t x x'> {Kx'iocc.t x'}
kproof_t Cx Kx' -> kproof_r (CR x x' Cx) (KR x' Kx')).

References

[1] William Clinger, editor. Proceedings of the 1992 ACM Conference on Lisp and Functional
Programming, LISP Pointers, Vol. V, No. 1, San Francisco, California, June 1992. ACM Press.

[2] Olivier Danvy. Back to direct style. Science of Computer Programming, 22(3):183-195, 1994.

[3] Olivier Danvy and Andrzej Filinski. Representing control, a study of the CPS transformation.
Mathematical Structures in Computer Science, 2(4):361-391, December 1992.

[4] Olivier Danvy and Julia L. Lawall. Back to direct style II: First-class continuations. In Clinger
[1], pages 299-310.

[5] Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining logics. Journal
of the ACM, 40(1):143-184, 1993. A preliminary version appeared in the proceedings of the
First IEEE Symposium on Logic in Computer Science, pages 194-204, June 1987.

[6] Julia L. Lawall. Continuation Introduction and Elimination in Higher-Order Programming
Languages. PhD thesis, Computer Science Department, Indiana University, Bloomington,
Indiana, USA, July 1994.

[7] Julia L. Lawall and Olivier Danvy. Separating stages in the continuation-passing style trans-
formation. In Susan L. Graham, editor, Proceedings of the Twentieth Annual ACM Symposium
on Principles of Programming Languages, pages 124-136, Charleston, South Carolina, January
1993. ACM Press.

[8] Flemming Nielson and Hanne Riis Nielson. Two-Level Functional Languages, volume 34 of
Cambridge Tracts in Theoretical Computer Science. Cambridge University Press, 1992.

[9] Frank Pfenning. A proof of the Church-Rosser theorem and its representation in a logical
framework. Journal of Automated Reasoning. To appear. A preliminary version is available as
Carnegie Mellon Technical Report CMU-CS-92-186, September 1992.

[10] Frank Pfenning. Logic programming in the LF logical framework. In Gerard Huet and Gordon
Plotkin, editors, Logical Frameworks, pages 149-181. Cambridge University Press, 1991.

[11] Frank Pfenning and Conal Elliott. Higher-order abstract syntax. In Mayer D. Schwartz,
editor, Proceedings of the ACM SIGPLAN'88 Conference on Programming Languages Design
and Implementation, SIGPLAN Notices, Vol. 23, No 7, pages 199-208, Atlanta, Georgia, June
1988. ACM Press.

[12] Frank Pfenning and Ekkehard Rohwedder. Implementing the meta-theory of deductive sys-
tems. In D. Kapur, editor, Proceedings of the 11th International Conference on Automated
Deduction, pages 537-551, Saratoga Springs, New York, June 1992. Springer-Verlag LNAI 607.

20

[13] Gordon D. Plotkin. Call-by-name, call-by-value and the A-calculus. Theoretical Computer

Science, 1:125-159, 1975.

[14] Amr Sabry and Matthias Felleisen. Reasoning about programs in continuation-passing style.

In Clinger [1], pages 288-298.

[15] Amr Sabry and Matthias Felleisen. Reasoning about programs in continuation-passing style.
LISP and Symbolic Computation, 6(3/4):289-360, December 1993.

[16] Guy L. Steele Jr. Rabbit: A compiler for Scheme. Technical Report AI-TR-474, Artificial
Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts,

May 1978.

[17] W. W. Tait. Intensional interpretation of functionals of finite type I. Journal of Symbolic

Logic, 32:198-212, 1967.

[18] Mitchell Wand and Dino Oliva. Proving the correctness of storage representations. In Clinger

[1], pages 151-160.

21

